

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

EMS-ESP Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/],
and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

[2.0.0 alpha]

Changed

	everything. See README

[1.9.5] 30-04-2020

Added

	Solar Module SM200 support

	Support writing to Junkers FR100 thermostats

	Support writing to RC100, Moduline 1000/1010 thermostats

	MM10 Mixing module support (thanks @MichaelDvP)

	MM200 warm water circuits (https://github.com/proddy/EMS-ESP/pull/315)

	Support for Moduline 200 and Sieger ES72 thermostats

	First implementation of writing to generic Junker Thermostats (thanks @Neonox31)

	Added model type (Buderus, Sieger, Junkers, Nefit, Bosch, Worcester) to device names

	set master_thermostat <product id> to choose with thermostat is master when there are multiple on the bus

	boiler wwonetime command from Telnet

	set bus_id <ID> to support multiple EMS-ESP circuits. Default is 0x0B to mimic a service key.

	mqtt_nestedjson option to disable multiple data records being nested into a single JSON string

	MQTT publish messages are queued and gracefully published every second to avoid TCP blocks

	Added features to WW messages (0x33, 0x34) to improve WW monitoring. (PR#338 by @ypaindaveine)

	Added mixing log and stub for EMS type 0xAC (PR#338 by @ypaindaveine)

	Added Thermostat retrieving settings (0xA5) (validated on RC30N) with MQTT support (thanks Yves @ypaindaveine. See #352)

	Merged with PR https://github.com/proddy/EMS-ESP/pull/366 from @MichaelDvP fixing RC20 and MM50

Fixed

	set boiler warm water temp on Junkers/Bosch HT3

	fixed detection of the Moduline 400 thermostat

	RC35 setting temperature also forces the current select temp to change, irrespective of the mode

Changed

	improved MQTT publishing to stop network flooding. publish_time of -1 is no publish, 0 is automatic otherwise its a time interval

	External sensors (like Dallas DS18*) are sent as a nested MQTT topic including their unqiue identifier

	mqttlog console command renamed to mqttqueue to only show the current publish queue

	status payload on start-up shows the IP and Version of EMS-ESP

	thermostat mode takes a string like manual,auto,heat,day,night,eco,comfort,holiday,nofrost

	thermostat temp also takes a mode string, e.g. thermostat temp 20 heat

	queue renamed to txqueue

Removed

	autodetect scan. Replaced with devices scan and devices scan+ for deep scanning

	mqttlog all and showing MQTT log in the web interface - no point showing history of previous mqtt publishes in ESP’s precious memory. For debugging I recommend using MQTT Explorer or another external tool.

[1.9.4] 15-12-2019

There are breaking changes in this release. See publish_time below and make sure you set this value to 0.

Added

	Added publish_always forcing MQTT topics to be always sent regardless if the data hasn’t changed

	Support for DHW once (OneTime water) heating command via MQTT issue 195 [https://github.com/proddy/EMS-ESP/issues/195]

	Added scripts to automatically build firmware images on every Commit/Pull and nightly builds using TravisCI

	Added option to WebUI to also download the latest development build

	Added build scripts for automated CI with TravisCI

	Implemented timezone support and automatic adjustment, also taking daylight saving times into account

	Added kick command to reset core services like NTP, Web, Web Sockets

	Added WiFi static IP (setting done in WebUI only)

	log w <type_id> for watching a specific telegram type ID

	initial support for EMS+ GB125s and MC110’s (https://github.com/proddy/EMS-ESP/wiki/MC110-controller)

	Buderus RFM200 receiver

Fixed

	Stability for some Wemos clones by decreasing wifi Tx strength and adding small delay

Changed

	Debug log times show real internet time (if NTP enabled)

	system shows local time instead of UTC

	fixed version numbers of libraries in platformio.ini

	Normalized Heating modes to off, manual, auto, night and day to keep generic and not Home Assistant specific (like heat)

	Keeping Thermostat day/night modes separate from off/auto/manual, and setting this for the Junkers FR50

	Removed publish_always

	Changed NTP interval from 1 hour to 12 hours

	Refactored EMS device library to make it support multi-EMS devices easier (e.g. multiple thermostats)

	autodetect deep removed and replaced with autodetect scan for scanning known devices.

	MQTT data will be sent when new data arrives. So publish_time is used to force a publish at a given frequency (2 mins is default), or 0 for off.

Removed

	thermostat scan and autodetect deep functions

	removed Event Logging to SPIFFS (worried about wearing). Replaced with SysLog.

[1.9.3] 2019-10-26

Added

	Report # TCP dropouts in the system command. These could be due to WiFI or MQTT disconnected.

	Added temp and mode to the MQTT thermostat_cmd topic

Fixed

	vertical bar showing in WebUI sidebar menu using FireFox

Changed

	Heartbeat MQTT payload is now in JSON

	platformio.ini targets. Use debug for custom builds.

[1.9.2] 2019-10-19

Important! This build has breaking changes:

	MQTT topics have changed. Use the mqttlog command to see the names of the subscriptions and the format of the payload data. Also reference the Wiki page [https://github.com/proddy/EMS-ESP/wiki/MQTT].

	Home Assistant .yaml files need updating to reflect the recent MQTT changes

	The web builder has been upgraded to use Gulp 4. Remove tools/webfilesbuilder/node_modules and re-install the libraries using npm ci from within the tools/webfilesbuilder folder

Added

	Handling of Mixing Module MM100 Status Messages (thanks @kstaniek)

	Retrieve/Set thermostat mode for Junkers FW100/120 thermostats (thanks @Neonox31)

	Added sending of all Mixer Module data via MQTT (thanks @peclik)

	Improved handling of MQTT publish and subscribe errors

	Added MQTT QOS (mqtt_qos, default 0), Keep Alive (mqtt_keepalive, default 60 seconds) and Retain (mqtt_retain, default off) as parameters to both telnet and WebUI

Fixed

	publish command also sends Dallas external temperature sensor values

	log_events setting wasn’t persisted in config file

Changed

	External dallas sensor values sent in MQTT payload as float values and not strings

	All MQTT topics for the Thermostat have the Heating Circuit appended (e.g. thermostat_data1). This includes the commands.

	Shower timer and shower alert and not MQTT published at boot up

	Heating Active logic change to use Selected Flow Temp of min 30 instead of 70 (https://github.com/proddy/EMS-ESP/issues/193)

	Cleaned up Telnet messages during bootup to only show key information.

Removed

	Removed telnet command shower timer and shower alert to toggle the switches

[1.9.1] 2019-10-05

Added

	Support for multiple Heating Circuits - https://github.com/proddy/EMS-ESP/issues/162

	new mqttlog command also shows which MQTT topics it is subscribed too

	Optimized event log loading in web and added integrity checks on all config and log files during boot

	autodetect quick for detecting known devices from our database list

	log_events option, now optional to save the log events to SPIFFS

Fixed

	fixed zero values (0.0) for setpoint temperature with the RC35 thermostat when in Auto mode - https://github.com/proddy/EMS-ESP/issues/180

	added check for corrupted event log, which could happen due to SPIFFS writing while UART is active

	made Junkers work again (broke in 1.9.0)

Changed

	Web login password is now mandatory

	Faster detection of EMS devices on bus by using the 0x07 telegram instead of the brute-force scan

	Fixes to the default HA climate component .yaml file to support latest Home Assistance (‘heat’ added)

	Update documentation in Wiki on MQTT and troubleshooting

	Slowed down firmware upload via the Web to prevent users rebooting too early

	Change way WiFi is intialized to prevent dual AP and Client

Removed

	Removed heating_circuit config setting

	Removed showing the JSON config files when Saving from the Web

[1.9.0] 2019-09-01

Changed

	New web interface with more features showing Boiler, Thermostat, Solar Module and Heat Pump. See https://github.com/proddy/EMS-ESP/wiki/Running-and-Monitoring

	Merged with @susisstrolch’s TxMode2 branch for improved support for sending EMS packages. This is the default tx mode.

	Upgraded MyESP library optimizations for WiFi, AP and error handling

	reboot command renamed to restart to keep consistent with web interface

	Renamed heartbeat to mqtt_heartbeat in config settings

	Renamed MQTT topic “wwactivated” to “boiler_cmd_wwactivated”

Fixed

	Handle Read and Write to EMS+ device logic changed, tested with RC3000

[1.8.1] 2019-07-27

Added

	Added back -DCRASH in Debug build target for capturing any ESP8266 stack dumps during crashes

	Web Interface, for checking stats and setting wifi credentials. See wiki for more details.

	reset firmware option. If the reset button on the ESP is pressed during boot up sequence (the LED is flashing very fast) all settings are erased and goes into AP mode.

	Added tx_mode back with options 0,1 and 2 until we’ve fixed option 2 that works for everyone and doesn’t reset ESP

	More solar module data captured, thanks to @Vuego123

	Detect thermostat mode for EMS+ RC300/Moduline 3000

	MQTT message to set boiler flowtemp (boiler_cmd_flowtemp). See wiki [https://github.com/proddy/EMS-ESP/wiki/MQTT].

Fixed

	Detecting unset values in the SPIFFS and setting default values

	Bosch Easy Connect wrongly classified as a thermostat

	Correctly handle telegrams who’s size are exactly 32 bytes (e.g. 0x19 MonitorSlow)

	Telnet also available when in AP mode

	Handling of thermostat temperatures that were single bytes and couldn’t exceed 25.5 (0xFF) degrees!

Changed

	Improved handling of Solar Modules (thanks @Vuego123)

	publish_wait renamed to publish_time, a value of 0 means disabling all MQTT sending

	How signed shorts are handled such as the current and setpoint temps on RC300s

	Stopped automatic refresh of web page, which causes crashes/memory loss after a short time

	Support HA 0.96 climate component changes

	-DDEFAULT_NO_SERIAL changed to -DFORCE_SERIAL

	some code cleanups, removing NULLS and moving some things fron heap to stack to prevent memory fragmentation

[1.8.0] 2019-06-15

Added

	HeatPump support (e.g. the Nefit Enviline)

	new device: Buderus MM50 Mixer

	new devices: Junkers FW100 and ISM1 (thanks Vuego123)

	Improved Tx logic to support EMS, EMS+ and Heatronic 3 (thanks kwertie01, susisstrolch, philrich)

	MQTT heartbeat

Fixed

	runtime exceptions with latest 2.5.1 arduino core

[1.7.0] 2019-05-11

Added

	EMS+ core support (thanks too @gl3nni3 for doing the first research)

	MQTT ‘restart’ topic to reboot ESP (thanks @balk77)

	Support for multiple thermostat heating circuits like the HC1/HC2 on a RC35, also via MQTT (thanks @lobocobra)

	boiler flowtemp command to set the flow temperature (issue 59) [https://github.com/proddy/EMS-ESP/issues/59]

	added a test harness to try out response to various telegrams (test command)

	tx_delay setting for circuits where we needed to slow down Tx transmission

	new boiler: Nefit proline hrc 24 cw4 thermostat and Nefit Enviline heatpump

	new boiler: Buderus Logamax plus

	new thermostat: Buderus RC300 and RC310 thermostats, read-only (issue 37) [https://github.com/proddy/EMS-ESP/issues/37]

	new thermostat: Junkers FR10, read-only (issue 98) [https://github.com/proddy/EMS-ESP/issues/98]

	new devices: Buderus Web Gateway KM200, Buderus Solar Module SM100

Changed

	types renamed to devices to also show all detected devices

	renamed silent_mode to listen_mode

	increased Tx queue to 100

[1.6.0] 2019-03-24

Added

	system command to show ESP8266 stats

	crash command to see stack of last system crash, with .py files to track stack dump (compile with -DCRASH)

	publish dallas external temp sensors to MQTT (thanks @JewelZB)

	shower timer and shower alert options available via set commands

	added support for warm water modes Hot, Comfort and Intelligent (issue 67) [https://github.com/proddy/EMS-ESP/issues/67]

	added set publish_time to set how often to force a publish of MQTT

	support for SM10 Solar Module including MQTT (issue 77) [https://github.com/proddy/EMS-ESP/issues/77]

	refresh command to force a fetch of all known data from the connected EMS devices

Fixed

	incorrect rendering of null temperature values (the -3200 degrees issue)

	OTA is more stable

	Added a hack to overcome WiFi power issues in arduino core 2.5.0 libraries causing constant wifi re-connects

	Performance issues with telnet output

Changed

	included various fixes and suggestions from @nomis

	upgraded MyESP library with many optimizations

	test_mode renamed to silent_mode

	set wifi replaced with set wifi_ssid and set wifi_password to allow values with spaces

	EMS values are stored in the raw format and only converted to strings when displayed or published, removing the need for parsing floats

	All floating point temperatures are to one decimal place (issue 79) [https://github.com/proddy/EMS-ESP/issues/79]

[1.5.6] 2019-03-09

Added

	test_mode option

Changed

	upgraded MyESP library

	minor changes

[1.5.5] 2019-03-07

Fixed

	Support the latest ArduinoJson v6 and espressif8266 2.0.4 libraries (in PlatformIO do a pio lib update and pio update)

Changed

	MQTT keep alive to 2 minutes (60 seconds was just too short for slower networks)

	Improved MQTT startup time

	Setting wifi or mqtt settings are immediate, no need to restart the ESP

	Text changes in the help

Added

	Show if MQTT is connected

	Show version of MyESP (the custom MQTT, Wifi, OTA, MDNS, Telnet library)

	EMS-OT OpenTherm connector

[1.5.4] 2019-03-03

Changed

	MQTT keep alive changed from 5 minutes to 1 minute

Added

	Callback for OTA. This is used to disable EMS bus during a firmware OTA update, which caused problems with the latest ESP89266 core libraries

	Added rough estimate of WiFi signal strength to info page

	Added the build time & date to the info page (optional in platformio.ini)

[1.5.3] 2019-02-22

Changed

	Support for latest esp8266 arduino core version 2.5.0 [https://github.com/esp8266/Arduino/releases/tag/2.5.0] and platform espressif8266 version 2.0.0

	Added board type to the info screen

Added

	Improved MQTT LWT (Last Will Testament). Uses payload called ‘online’ and ‘offline’. See https://github.com/proddy/EMS-ESP/issues/57

	Added ESP32 support to MyESP library

	Added Bosch Easy thermostat, Buderus Logamax U122

	Support for changing boiler wwtemp via MQTT (merge #58 from egrekov). thanks!

Removed

	Custom MDNS support. Now handled much better in the new esp core under OTA

[1.5.2] 2019-02-04

Changed

	Change wifi settings using the set wifi <ssid> <password> command

Added

	Added incoming MQTT “TOPIC_BOILER_WWACTIVATED” to set the warm water on/off. Payload is 1 or 0. See issue [https://github.com/proddy/EMS-ESP/issues/46#issuecomment-460375689].

	Added the list of all MQTT topics to the README file

[1.5.1] 2019-02-03

Fixed

	issue with Serial monitoring conflicting with UART when both running

	Fixed typo with -D settings in the example platformio.ini

Changed

	thermostat temp now except floats (e.g. 20.5). Some thermostats may round up or down if they use 0.5 intervals.

[1.5.0] 2019-02-03

Added

	Support for RC10 thermostat

	New command set serial

Changed

	Improved Tx logic. Retries are more efficient and startup is faster and less error prone.

	“# Rx telegrams” and “# Tx telegrams” show number of successful Reads and Writes initiated by the user or automatically by the code. This makes it easy to see if the Tx is working.

	Some refactoring in preparation for the EMS+ support coming soon

Removed

	Removed the poll and tx commands

	DEBUG_SUPPORT. Now controlled with the ‘set serial’ command

	removed MQTT and WIFI settings from my_config.h. These have to be set either within the application (using set) or hardcoded in platformio.ini You can now check in my_config.h without everyone seeing your passwords!

	TxCapable removed from info

[1.4.1] 2019-01-29

Added

	The led pin, dallas pin and both thermostat and boiler type IDs can be set with the application, and stored.

Changed

	some minor improvements to autodetect

[1.4.0] 2019-01-27

Changed

	last will MQTT topic prefixed with a header like the rest of the topics

	All double and float numbers rendered to 2 decimal places (precision = 2)

	Default logging set to None when starting a telnet session

Added

	Added support for external Dallas sensors (DS1822, DS18S20, DS18B20, DS1825). See readme

	Added UBAParametersMessage type to fetch boiler modulation min & max values

	Report shows system load average

[1.3.2] 2019-01-23

Fixed

	Handle thermostats that don’t have builtin temperature sensors when showing current temperature (https://github.com/proddy/EMS-ESP/issues/18#issuecomment-451012963)

Changed

	Improved way to identify if the EMS bus is connected

	Improved ‘types’ command to show more details

	Improved auto detect of thermostat types

Added

	Some more devices like the Nefit Topline & RC310 thermostat recognition

	Added a check to see Tx is possible. See ‘Tx Capable’ under the ‘info’ screen

Removed

	Removed MY_BOILER_MODELID from my_config.h. It’s always hardcoded.

[1.3.1] 2019-01-12

Fixed

	telnet commands with set are no longer forced to lower case

Changed

	Custom settings (e.g set led) moved outside MyESP

	Moved all MQTT to my_config.h making it independent from Home Assistant

Added

	MQTT keep alive, last will testament and other settings all configurable in my_config.h

	RC35: MQTT day/night/auto mode; sets setpoint temperature in type 0x3D depends on current night/day Mode (@SpaceTeddy) #33 [https://github.com/proddy/EMS-ESP/pull/33]

[1.3.0] 2019-01-09

Changed

	Renamed project from EMS-ESP-Boiler to EMS-ESP since it’s kinda EMS generic now

	Support for RC20RF and RFM20 (https://github.com/proddy/EMS-ESP/issues/18)

	Moved all EMS device information into a separate file ems_devices.h so no longer need to touch ems.h

	Telnet commands can be strings now and output is suspended when typing

Removed

	Removed SHOWER_TEST

	Removed WIFI and MQTT credentials from the platformio.ini file

Added

	Settings are saved and loaded from the ESP8266’s file system (SPIFFS). Can be set using the ‘set’ command

	Improved support when in Access Point mode (192.168.4.1)

	pre-built firmwares are back

[1.2.4] 2019-01-04

Changed

	Scanning known EMS Devices now ignores duplicates (https://github.com/proddy/EMS-ESP/pull/30)

	ServiceCode stored as a two byte char

	Support for RC20RF and RFM20 (https://github.com/proddy/EMS-ESP/issues/18)

[1.2.3] 2019-01-03

Fixed

	Can now hardcode Boiler and Thermostat types in my_config.h to bypass auto-detection

	Fixed MQTT subscribing to Heating and Hot Water active topics

	Fixed for listening to incoming MQTT topics (https://github.com/proddy/EMS-ESP/issues/27)

	Fixed handling of current temperature on an RC35-type thermostat that doesn’t have a sensor (https://github.com/proddy/EMS-ESP/issues/18)

[1.2.2] 2019-01-02

Fixed

	Issues in 1.2.1 (see https://github.com/proddy/EMS-ESP/issues/25)

	Logic for determining if there is activity on the EMS bus and using the onboard LEDs properly

[1.2.1] 2019-01-02

Fixed

	Only process broadcast messages if the offset (byte 4) is 0. (https://github.com/proddy/EMS-ESP/issues/23)

	Improved checking for duplicate sent Tx telegrams by comparing CRCs

	Removed distiquishing between noise on the line and corrupt telegrams (https://github.com/proddy/EMS-ESP/issues/24)

[1.2.0] 2019-01-01

Fixed

	Incorrect indenting in climate.yaml (thanks @mrfixit1)

	Improved support for slower WiFi connections

	Fixed issue with OTA not always giving back a completion response to platformio

	Fixed issue with repeating reads after a raw mode send

	Fixed handling of long integers (thanks @SpaceTeddy)

Added

	added ‘dout’ flashmode to platformio.ini so OTA works now when uploading to a Wemos D1 Pro’s or any other board with larger flash’s

	added un tested supporting RC35 type of thermostats

	Try and discover and set Boiler and Thermostat types automatically

	Fetch UBATotalUptimeMessage from Boiler to get total working minutes

	Added check to see if bus is connected. Shown in stats page

	If no Wifi connection can be made, start up as a WiFi Access Point (AP)

	Report out service codes and water-flow pull-request [https://github.com/proddy/EMS-ESP/pull/20/files]. Thanks @Bonusbartus

Changed

	Build option is called DEBUG_SUPPORT (was USE_SERIAL)

	Replaced old ESPHelper with my own MyESP library to handle Wifi, MQTT, MDNS and Telnet handlers. Supports asynchronous TCP and has smaller memory footprint. And moved to libs directory.

	Simplified LED error checking. If enabled (by default), solid means connected and flashing means error. Uses either an external pull-up or the onboard ESP8266 LED.

	Improved Telnet debugging which uses TelnetSpy to keep a buffer of previous output

	Optimized memory usage & heap conflicts, removing nasty things like strcpy, sprintf where possible

	Improved checking for tap water on/off (thanks @Bonusbartus)

Removed

	Time and TimeLib’s. Not used in code.

	Removed build option MQTT_MAX_PACKAGE_SIZE as not using the PubSubClient library any more

	Removed all of Espurna’s pre-built firmwares and instructions to build. Keeping it simple.

[1.1.1] 2018-12-23

Removed

	Espurna build notes and ready made firmware

[1.1.0] 2018-12-22

Fixed

	Fixed handling of negative floating point values (like outdoor temp)

	Fixed handling of auto & manual mode on an RC30

	Fixed condition where all telegram types were processed, instead of only broadcasts or our own reads [https://github.com/proddy/EMS-ESP/issues/15]

Added

	Created this CHANGELOG.md file!

	Added support for the Nefit Easy thermostat, reading of temperature values only [https://github.com/proddy/EMS-ESP/issues/9] - note read only (big thanks @kroon040 for lending me an Easy device)

	Added support for RC35/Moduline 400 [https://github.com/proddy/EMS-ESP/issues/14] - read only

	New raw logging mode for logging [https://github.com/proddy/EMS-ESP/issues/11]

	New ‘r’command to send raw data to EMS [https://github.com/proddy/EMS-ESP/issues/11]

	Added MQTT messages for hot water on and heating on [https://github.com/proddy/EMS-ESP/issues/10]

	Implemented FIFO circular buffer queue for up to 20 Tx messages (Q command to show queue)

	Toggle Tx transmission via telnet (use ‘X’ command)

	Show thermostat type in help stats (use ‘s’ command)

	Show version is help stats (use ‘?’ command)

Changed

	Improved overall formatting of logging

	Include app name and version in telnet help

	Improved method to switch off hot tap water in Shower Alert

	Telnet P and M commands have changed

	Enabling Logging in telnet is now the ‘l’ command

	Logging is set back to None when telnet session closes

	Improved fetching of initial boiler values to post to MQTT at startup

	Improved handling and retrying of write/Tx commands

Removed

	Hid access from telnet to the Experimental custom function command ‘x’

	Tx and Rx stats have gone from the stats page, as they were pretty meaningless

	Removed NO_TX define in platformio and replaced with system parameter ‘command X’

	Removed -DDEBUG option in build

	Removed wwtemp MQTT messages to set the boiler temp. You’ll never miss it.

	Removed LEDs for Tx, Rx and Err. Too many flashing lights and it drains the current.

	Removed capturing of last Rx and Tx times

	Support for older RC20 thermostats

Known Issues

	There’s a nasty memory leek when in telnet’s verbose mode with sending which causes the EMS to reset when running for a while.

[1.0.1] 2018-09-24

	Initial stable version

[0.1.0] 2018-05-14

	Initial development version

EMS-ESP version 2.0 (beta)

New Features in v2

	A new web interface using React and TypeScript that’s now secure as each URL endpoint is protected by issuing a JWT which is then sent using Bearer Authentication. Using a Captive Portal in AP mode or connecting to a local wifi network.

[image: _images/web_settings.PNG]settings
[image: _images/web_status.PNG]status

	A new console. Like in version 1.9 it works with both Serial and Telnet but with a rich set of commands and more intuitive with behavior similar to a Linux-style shell. It supports multiple connections and commands that alter the settings or interact directly with EMS devices are secure behind an admin password. A full list of commands is below, here are the key ones:

	help lists the commands and keywords

	some commands take you into a new context, a bit like a sub-menu. e.g. system, thermostat. Use help to show which commands this context has and exit or CTRL-D to get back to the root.

	To change a setting use the set command. Typing set shows the current settings.

	show shows the data specific to the which context you’re in.

	su to switch to Admin which enables more commands such as most of the set commands. The default password is “ems-esp-neo” which can be changed with passwd from the system menu. When in Admin mode the command prompt switches from $ to #.

	log sets the logging level. log off disables logging. Use log debug for debugging commands and actions.

	watch will output the incoming Rx telegrams to the console. You can also show these in its ‘raw’ data format and also watch a particular ID.

	CTRL-D to exit, CTRL-U to remove line, TAB to auto-complete

	There is no “serial mode” anymore like with version 1.9. When the Wifi cannot connect to the SSID it will automatically enter a “safe” mode where the Serial console is activated automatically (baud 115200). Note Serial is always available on the ESP32 because it has multiple UARTs.

	The onboard LED behaves like in 1.9. A solid LED means good connection and EMS data is coming in. A slow pulse means either the WiFi or the EMS bus is not connected yet. A very fast pulse is when the system is booting up and configuring itself, which typically takes 5 seconds.

	Built to work with both EMS8266 and ESP32

	Extended MQTT to use MQTT discovery on Home Assistant.

	For debugging there is an offline mode where the code can be compiled and executed standalone without uploading to an ESP controller. Use make (based off GNUMakefile).

Uploading the firmware

	If you’re not using PlatformIO, use the command-line and Python. You can download Python from https://www.python.org/downloads/. Make sure you also get:

	esptool, install using the command pip install esptool

	and for OTA updates later, espota from https://github.com/esp8266/Arduino/blob/master/tools/espota.py

	Grab the latest firmware binary from https://github.com/proddy/EMS-ESP/releases/tag/travis-v2-build

	Uploading directly via USB.

For ESP8266: esptool.py -p <COM PORT> -b 921600 write_flash 0x00000 <firmware.bin>

For ESP32: esptool.py --chip esp32 --port "COM6" --baud 921600 --before default_reset --after hard_reset write_flash -z --flash_mode dio --flash_freq 40m --flash_size detect 0x1000 XX\.platformio\packages\framework-arduinoespressif32\tools\sdk\bin\bootloader_dio_40m.bin 0x8000 XX\.pio\build\esp32\partitions.bin 0xe000 XX\.platformio\packages\framework-arduinoespressif32\tools\partitions\boot_app0.bin 0x10000 <firmware.bin>

	Uploading over WiFi: espota.py --debug --progress --port 8266 --auth ems-esp-neo -i <IP address> -f <firmware.bin>

Setting EMS-ESP up for the first time

	Connect to the Access Point called ems-esp. Login to the captive portal with admin/admin and set the WiFi credentials and restart the ESP.

	When it connects to your network you can use the Web UI to configure the other settings or login using Telnet. See the console commands below for options. The password for su is the sames as the JWT secret which you can see from the WebUI.

List of console commands

common commands available in all contexts:
 exit
 help
 log [level]
 watch <on | off | raw> [ID]
 su

(from the root)
	set
	refresh
	system (enters a context)
	boiler (enters a context)
	thermostat (enters a context)
	scan devices [deep]
	send telegram <"XX XX ...">
	set bus_id <device ID>
	set tx_mode <n>
	show
	show devices
	show ems
	show values

system
	set
	show
	show mqtt
	passwd
	restart
	set wifi hostname <name>
	set wifi password
	set wifi ssid <name>

boiler
	comfort <hot |eco | intelligent>
	flowtemp <degrees>
	wwactive <on | off>
	wwcirculation <on | off>
	wwonetime <on | off>
	wwtemp <degrees>
	read <type ID>

thermostat
	set
	set master [device ID]
	mode <mode> [heating circuit]
	temp <degrees> [heating circuit]
	read <type ID>

Basic Design Principles

	The core services like telnet, logging and shell are based off the libraries from @nomis. I also adopted his general design pattens such as making everything as asynchronous as possible so that no one operation should starve another operation of it’s time to execute (https://isocpp.org/wiki/faq/ctors#static-init-order).

	All EMS devices (e.g. boiler, thermostat, solar modules, mixing units etc) are derived from a factory base class and each class handles its own registering of telegram and mqtt handlers. This makes the EMS device code easier to manage and we can extend with new telegrams types and features.

Things to tidy up in code later

	Replace vectors of class objects with shared pointers and use emplace_back since it instantiates during construction. It may have a performance gain.

	Add real unit tests using platformio’s test bed (https://docs.platformio.org/en/latest/plus/pio-remote.html)

	See if it’s easier to use timers instead of millis() based timers, using https://github.com/esp8266/Arduino/blob/master/libraries/esp8266/examples/BlinkPolledTimeout/BlinkPolledTimeout.ino

	It’s slow on ESP8266 - probably due to heap

	AP not showing correct wifi SSID

	remove Serial.*s

	add Boiler web page using web sockets

	check Chrome Tab errors

	check if we need to disabled UART during OTA

	fix Makefile for standalone

handy git commands

	git pull –tags -f

	git pull upstream master

 Do you want to do a pull request?

Excellent! Thanks for contributing!

Please do keep in mind these basic rules:

Pull request

	Do the pull request against the dev branch

	Only touch relevant files (beware if your editor has auto-formatting feature enabled)

name: Bug report
about: Create a report to help us improve
title: ‘’
labels: bug
assignees: ‘’

Before creating a new issue please check that you have:

	searched the existing issues [https://github.com/proddy/EMS-ESP/issues] (both open and closed)

	searched the wiki help pages [https://github.com/proddy/EMS-ESP/wiki/Troubleshooting]

Completing this template will help developers and contributors to address the issue. Try to be as specific and extensive as possible. If the information provided is not enough the issue will likely be closed.

You can now remove this line and the above ones. Text in italic is meant to be replaced by your own words. If any of the sections below are not relevant to the issue (for instance, the screenshots) then you can delete them.

Bug description
A clear and concise description of what the bug is.

Steps to reproduce
Steps to reproduce the behavior.

Expected behavior
A clear and concise description of what you expected to happen.

Screenshots
If applicable, add screenshots to help explain your problem.

Device information
Copy-paste here the information as it is outputted by the device. You can get this information by from the telnet session using the system command and info.

Additional context
Add any other context about the problem here.

name: Feature request
about: Suggest an idea for this project
title: ‘’
labels: enhancement
assignees: ‘’

Before creating a new feature request please check that you have searched the existing issues [https://github.com/proddy/EMS-ESP/issues] (both open and closed)

Completing this template will help developers and contributors evaluating the feature. If the information provided is not enough the issue will likely be closed.

You can now remove this line and the above ones. Text in italic is meant to be replaced by your own words. If any of the sections below are not relevant to the request then you can delete them.

Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Ex. I’m always frustrated when […]

Describe the solution you’d like
A clear and concise description of what you want to happen.

Describe alternatives you’ve considered
A clear and concise description of any alternative solutions or features you’ve considered.

Additional context
Add any other context or screenshots about the feature request here.

name: Questions & Troubleshooting
about: Anything not a bug or feature request
title: ‘’
labels: question
assignees: ‘’

Before creating a new issue please check that you have:

	searched the existing issues [https://github.com/proddy/EMS-ESP/issues] (both open and closed)

	searched the wiki help pages [https://github.com/proddy/EMS-ESP/wiki/Troubleshooting]

Completing this template will help developers and contributors help you. Try to be as specific and extensive as possible. If the information provided is not enough the issue will likely be closed.

You can now remove this line and the above ones. Text in italic is meant to be replaced by your own words. If any of the sections below are not relevant to the issue (for instance, the screenshots) then you can delete them.

Question
A clear and concise description of what the problem/doubt is.

Screenshots
If applicable, add screenshots to help explain your problem.

Device information
Copy-paste here the information as it is outputted by the device. You can get this information by from the telnet session with the logging set to Verbose mode.

Additional context
Add any other context about the problem here.

mcu-uuid-common [image: Build Status] [https://travis-ci.org/nomis/mcu-uuid-common]

Description

Microcontroller common utilities library

Purpose

The primary purpose of this library is to maintain a common 64-bit uptime in
milliseconds with overflow handling, as long as the loop function is called
regularly.

Documentation

Read the documentation [https://mcu-uuid-common.readthedocs.io/] generated
from the docs directory.

mcu-uuid-console [image: Build Status] [https://travis-ci.org/nomis/mcu-uuid-console]

Description

Microcontroller console shell

Purpose

Provides a framework for creating a console shell with commands. The
container of commands (uuid::console::Commands) can be shared
across multiple shell instances.

Documentation

Read the documentation [https://mcu-uuid-console.readthedocs.io/] generated
from the docs directory.

mcu-uuid-log [image: Build Status] [https://travis-ci.org/nomis/mcu-uuid-log]

Description

Microcontroller logging framework

Purpose

Provides a framework for handling log messages. This library is for
single threaded applications and cannot be used from an interrupt
context.

Documentation

Read the documentation [https://mcu-uuid-log.readthedocs.io/] generated
from the docs directory.

mcu-uuid-syslog [image: Build Status] [https://travis-ci.org/nomis/mcu-uuid-syslog]

Description

Microcontroller syslog service

Purpose

Provides a log handler that sends messages to a syslog server (using
the RFC 5424 protocol [https://tools.ietf.org/html/rfc5424]).

Documentation

Read the documentation [https://mcu-uuid-syslog.readthedocs.io/]
generated from the docs directory.

mcu-uuid-telnet [image: Build Status] [https://travis-ci.org/nomis/mcu-uuid-telnet]

Description

Microcontroller telnet service

Purpose

Provides access to a console shell as a telnet server (using the
RFC 854 protocol [https://tools.ietf.org/html/rfc854]).

Documentation

Read the documentation [https://mcu-uuid-telnet.readthedocs.io/]
generated from the docs directory.

ArduinoJson: change log

HEAD

	Fixed “maybe-uninitialized” warning (issue #1217)

v6.15.0 (2020-03-22)

	Added DeserializationOption::Filter (issue #959)

	Added example JsonFilterExample.ino

	Changed the array subscript operator to automatically add missing elements

	Fixed “deprecated-copy” warning on GCC 9 (fixes #1184)

	Fixed MemberProxy::set(char[]) not duplicating the string (issue #1191)

	Fixed enums serialized as booleans (issue #1197)

	Fixed incorrect string comparison on some platforms (issue #1198)

	Added move-constructor and move-assignment to BasicJsonDocument

	Added BasicJsonDocument::garbageCollect() (issue #1195)

	Added StaticJsonDocument::garbageCollect()

	Changed copy-constructor of BasicJsonDocument to preserve the capacity of the source.

	Removed copy-constructor of JsonDocument (issue #1189)

BREAKING CHANGES

Copy-constructor of BasicJsonDocument

In previous versions, the copy constructor of BasicJsonDocument looked at the source’s memoryUsage() to choose its capacity.
Now, the copy constructor of BasicJsonDocument uses the same capacity as the source.

Example:

DynamicJsonDocument doc1(64);
doc1.set(String("example"));

DynamicJsonDocument doc2 = doc1;
Serial.print(doc2.capacity()); // 8 with ArduinoJson 6.14
 // 64 with ArduinoJson 6.15

I made this change to get consistent results between copy-constructor and move-constructor, and whether RVO applies or not.

If you use the copy-constructor to optimize your documents, you can use garbageCollect() or shrinkToFit() instead.

Copy-constructor of JsonDocument

In previous versions, it was possible to create a function that take a JsonDocument by value.

void myFunction(JsonDocument doc) {}

This function gives the wrong clues because it doesn’t receive a copy of the JsonDocument, only a sliced version.
It worked because the copy constructor copied the internal pointers, but it was an accident.

From now, if you need to pass a JsonDocument to a function, you must use a reference:

void myFunction(JsonDocument& doc) {}

v6.14.1 (2020-01-27)

	Fixed regression in UTF16 decoding (issue #1173)

	Fixed containsKey() on JsonVariantConst

	Added getElement() and getMember() to JsonVariantConst

v6.14.0 (2020-01-16)

	Added BasicJsonDocument::shrinkToFit()

	Added support of uint8_t for serializeJson(), serializeJsonPretty(), and serializeMsgPack() (issue #1142)

	Added ARDUINOJSON_ENABLE_COMMENTS to enable support for comments (defaults to 0)

	Auto enable support for std::string and std::stream on modern compilers (issue #1156)
(No need to define ARDUINOJSON_ENABLE_STD_STRING and ARDUINOJSON_ENABLE_STD_STREAM anymore)

	Improved decoding of UTF-16 surrogate pairs (PR #1157 by @kaysievers)
(ArduinoJson now produces standard UTF-8 instead of CESU-8)

	Added measureJson, measureJsonPretty, and measureMsgPack to keywords.txt
(This file is used for syntax highlighting in the Arduino IDE)

	Fixed variant.is<nullptr_t>()

	Fixed value returned by serializeJson(), serializeJsonPretty(), and serializeMsgPack() when writing to a String

	Improved speed of serializeJson(), serializeJsonPretty(), and serializeMsgPack() when writing to a String

BREAKING CHANGES

Comments

Support for comments in input is now optional and disabled by default.

If you need support for comments, you must defined ARDUINOJSON_ENABLE_COMMENTS to 1; otherwise, you’ll receive InvalidInput errors.

#define ARDUINOJSON_ENABLE_COMMENTS 1
#include <ArduinoJson.h>

v6.13.0 (2019-11-01)

	Added support for custom writer/reader classes (issue #1088)

	Added conversion from JsonArray and JsonObject to bool, to be consistent with JsonVariant

	Fixed deserializeJson() when input contains duplicate keys (issue #1095)

	Improved deserializeMsgPack() speed by reading several bytes at once

	Added detection of Atmel AVR8/GNU C Compiler (issue #1112)

	Fixed deserializer that stopped reading at the first 0xFF (PR #1118 by @mikee47)

	Fixed dangling reference in copies of MemberProxy and ElementProxy (issue #1120)

v6.12.0 (2019-09-05)

	Use absolute instead of relative includes (issue #1072)

	Changed JsonVariant::as<bool>() to return true for any non-null value (issue #1005)

	Moved ancillary files to extras/ (issue #1011)

v6.11.5 (2019-08-23)

	Added fallback implementations of strlen_P(), strncmp_P(), strcmp_P(), and memcpy_P() (issue #1073)

v6.11.4 (2019-08-12)

	Added measureJson() to the ArduinoJson namespace (PR #1069 by @nomis)

	Added support for basic_string<char, traits, allocator> (issue #1045)

	Fixed example JsonConfigFile.ino for ESP8266

	Include Arduino.h if ARDUINO is defined (PR #1071 by @nomis)

v6.11.3 (2019-07-22)

	Added operators == and != for JsonDocument, ElementProxy, and MemberProxy

	Fixed comparison of JsonVariant when one contains a linked string and the other contains an owned string (issue #1051)

v6.11.2 (2019-07-08)

	Fixed assignment of JsonDocument to JsonVariant (issue #1023)

	Fix invalid conversion error on Particle Argon (issue #1035)

v6.11.1 (2019-06-21)

	Fixed serialized() not working with Flash strings (issue #1030)

v6.11.0 (2019-05-26)

	Fixed deserializeJson() silently accepting a Stream* (issue #978)

	Fixed invalid result from operator| (issue #981)

	Made deserializeJson() more picky about trailing characters (issue #980)

	Added ARDUINOJSON_ENABLE_NAN (default=0) to enable NaN in JSON (issue #973)

	Added ARDUINOJSON_ENABLE_INFINITY (default=0) to enable Infinity in JSON

	Removed implicit conversion in comparison operators (issue #998)

	Added lexicographical comparison for JsonVariant

	Added support for nullptr (issue #998)

BREAKING CHANGES

NaN and Infinity

The JSON specification allows neither NaN not Infinity, but previous
versions of ArduinoJson supported it. Now, ArduinoJson behaves like most
other libraries: a NaN or and Infinity in the JsonDocument, becomes
a null in the output JSON. Also, deserializeJson() returns
InvalidInput if the JSON document contains NaN or Infinity.

This version still supports NaN and Infinity in JSON documents, but
it’s disabled by default to be compatible with other JSON parsers.
If you need the old behavior back, define ARDUINOJSON_ENABLE_NAN and
ARDUINOJSON_ENABLE_INFINITY to 1;:

#define ARDUINOJSON_ENABLE_NAN 1
#define ARDUINOJSON_ENABLE_INFINITY 1
#include <ArduinoJson.h>

The “or” operator

This version slightly changes the behavior of the | operator when the
variant contains a float and the user requests an integer.

Older versions returned the floating point value truncated.
Now, it returns the default value.

// suppose variant contains 1.2
int value = variant | 3;

// old behavior:
value == 1

// new behavior
value == 3

If you need the old behavior, you must add if (variant.is<float>()).

v6.10.1 (2019-04-23)

	Fixed error “attributes are not allowed on a function-definition”

	Fixed deserializeJson() not being picky enough (issue #969)

	Fixed error “no matching function for call to write(uint8_t)” (issue #972)

v6.10.0 (2019-03-22)

	Fixed an integer overflow in the JSON deserializer

	Added overflow handling in JsonVariant::as<T>() and JsonVariant::is<T>().

	as<T>() returns 0 if the integer T overflows

	is<T>() returns false if the integer T overflows

	Added BasicJsonDocument to support custom allocator (issue #876)

	Added JsonDocument::containsKey() (issue #938)

	Added JsonVariant::containsKey()

v6.9.1 (2019-03-01)

	Fixed warning “unused variable” with GCC 4.4 (issue #912)

	Fixed warning “cast increases required alignment” (issue #914)

	Fixed warning “conversion may alter value” (issue #914)

	Fixed naming conflict with “CAPACITY” (issue #839)

	Muted warning “will change in GCC 7.1” (issue #914)

	Added a clear error message for StaticJsonBuffer and DynamicJsonBuffer

	Marked ArduinoJson.h as a “system header”

v6.9.0 (2019-02-26)

	Decode escaped Unicode characters like \u00DE (issue #304, PR #791)
Many thanks to Daniel Schulte (aka @trilader) who implemented this feature.

	Added option ARDUINOJSON_DECODE_UNICODE to enable it

	Converted JsonArray::copyFrom()/copyTo() to free functions copyArray()

	Renamed JsonArray::copyFrom() and JsonObject::copyFrom() to set()

	Renamed JsonArray::get() to getElement()

	Renamed JsonArray::add() (without arg) to addElement()

	Renamed JsonObject::get() to getMember()

	Renamed JsonObject::getOrCreate() to getOrAddMember()

	Fixed JsonVariant::isNull() not returning true after set((char*)0)

	Fixed segfault after variant.set(serialized((char*)0))

	Detect IncompleteInput in false, true, and null

	Added JsonDocument::size()

	Added JsonDocument::remove()

	Added JsonVariant::clear()

	Added JsonVariant::remove()

v6.8.0-beta (2019-01-30)

	Import functions in the ArduinoJson namespace to get clearer errors

	Improved syntax highlighting in Arduino IDE

	Removed default capacity of DynamicJsonDocument

	JsonArray::copyFrom() accepts JsonArrayConst

	JsonVariant::set() accepts JsonArrayConst and JsonObjectConst

	JsonDocument was missing in the ArduinoJson namespace

	Added memoryUsage() to JsonArray, JsonObject, and JsonVariant

	Added nesting() to JsonArray, JsonDocument, JsonObject, and JsonVariant

	Replaced JsonDocument::nestingLimit with an additional parameter
to deserializeJson() and deserializeMsgPack()

	Fixed uninitialized variant in JsonDocument

	Fixed StaticJsonDocument copy constructor and copy assignment

	The copy constructor of DynamicJsonDocument chooses the capacity according to the memory usage of the source, not from the capacity of the source.

	Added the ability to create/assign a StaticJsonDocument/DynamicJsonDocument from a JsonArray/JsonObject/JsonVariant

	Added JsonDocument::isNull()

	Added JsonDocument::operator[]

	Added ARDUINOJSON_TAB to configure the indentation character

	Reduced the size of the pretty JSON serializer

	Added add(), createNestedArray() and createNestedObject() to JsonVariant

	JsonVariant automatically promotes to JsonObject or JsonArray on write.
Calling JsonVariant::to<T>() is not required anymore.

	JsonDocument now support the same operations as JsonVariant.
Calling JsonDocument::as<T>() is not required anymore.

	Fixed example JsonHttpClient.ino

	User can now use a JsonString as a key or a value

BREAKING CHANGES

DynamicJsonDocument’s constructor

The parameter to the constructor of DynamicJsonDocument is now mandatory

Old code:

DynamicJsonDocument doc;

New code:

DynamicJsonDocument doc(1024);

Nesting limit

JsonDocument::nestingLimit was replaced with a new parameter to deserializeJson() and deserializeMsgPack().

Old code:

doc.nestingLimit = 15;
deserializeJson(doc, input);

New code:

deserializeJson(doc, input, DeserializationOption::NestingLimit(15));

v6.7.0-beta (2018-12-07)

	Removed the automatic expansion of DynamicJsonDocument, it now has a fixed capacity.

	Restored the monotonic allocator because the code was getting too big

	Reduced the memory usage

	Reduced the code size

	Renamed JsonKey to JsonString

	Removed spurious files in the Particle library

v6.6.0-beta (2018-11-13)

	Removed JsonArray::is<T>(i) and JsonArray::set(i,v)

	Removed JsonObject::is<T>(k) and JsonObject::set(k,v)

	Replaced T JsonArray::get<T>(i) with JsonVariant JsonArray::get(i)

	Replaced T JsonObject::get<T>(k) with JsonVariant JsonObject::get(k)

	Added JSON_STRING_SIZE()

	~~Replacing or removing a value now releases the memory~~

	Added DeserializationError::code() to be used in switch statements (issue #846)

v6.5.0-beta (2018-10-13)

	Added implicit conversion from JsonArray and JsonObject to JsonVariant

	Allow mixed configuration in compilation units (issue #809)

	Fixed object keys not being duplicated

	JsonPair::key() now returns a JsonKey

	Increased the default capacity of DynamicJsonDocument

	Fixed JsonVariant::is<String>() (closes #763)

	Added JsonArrayConst, JsonObjectConst, and JsonVariantConst

	Added copy-constructor and copy-assignment-operator for JsonDocument (issue #827)

v6.4.0-beta (2018-09-11)

	Copy JsonArray and JsonObject, instead of storing pointers (issue #780)

	Added JsonVariant::to<JsonArray>() and JsonVariant::to<JsonObject>()

v6.3.0-beta (2018-08-31)

	Implemented reference semantics for JsonVariant

	Replaced JsonPair’s key and value with key() and value()

	Fixed serializeJson(obj[key], dst) (issue #794)

BREAKING CHANGES

JsonVariant

JsonVariant now has a semantic similar to JsonObject and JsonArray.
It’s a reference to a value stored in the JsonDocument.
As a consequence, a JsonVariant cannot be used as a standalone variable anymore.

Old code:

JsonVariant myValue = 42;

New code:

DynamicJsonDocument doc;
JsonVariant myValue = doc.to<JsonVariant>();
myValue.set(42);

JsonPair

Old code:

for(JsonPair p : myObject) {
 Serial.println(p.key);
 Serial.println(p.value.as<int>());
}

New code:

for(JsonPair p : myObject) {
 Serial.println(p.key());
 Serial.println(p.value().as<int>());
}

CAUTION: the key is now read only!

v6.2.3-beta (2018-07-19)

	Fixed exception when using Flash strings as object keys (issue #784)

v6.2.2-beta (2018-07-18)

	Fixed invalid application of 'sizeof' to incomplete type '__FlashStringHelper' (issue #783)

	Fixed char[] not duplicated when passed to JsonVariant::operator[]

v6.2.1-beta (2018-07-17)

	Fixed JsonObject not inserting keys of type String (issue #782)

v6.2.0-beta (2018-07-12)

	Disabled lazy number deserialization (issue #772)

	Fixed JsonVariant::is<int>() that returned true for empty strings

	Improved float serialization when -fsingle-precision-constant is used

	Renamed function RawJson() to serialized()

	serializeMsgPack() now supports values marked with serialized()

BREAKING CHANGES

Non quoted strings

Non quoted strings are now forbidden in values, but they are still allowed in keys.
For example, {key:"value"} is accepted, but {key:value} is not.

Preformatted values

Old code:

object["values"] = RawJson("[1,2,3,4]");

New code:

object["values"] = serialized("[1,2,3,4]");

v6.1.0-beta (2018-07-02)

	Return JsonArray and JsonObject by value instead of reference (issue #309)

	Replaced success() with isNull()

BREAKING CHANGES

Old code:

JsonObject& obj = doc.to<JsonObject>();
JsonArray& arr = obj.createNestedArray("key");
if (!arr.success()) {
 Serial.println("Not enough memory");
 return;
}

New code:

JsonObject obj = doc.to<JsonObject>();
JsonArray arr = obj.createNestedArray("key");
if (arr.isNull()) {
 Serial.println("Not enough memory");
 return;
}

v6.0.1-beta (2018-06-11)

	Fixed conflicts with isnan() and isinf() macros (issue #752)

v6.0.0-beta (2018-06-07)

	Added DynamicJsonDocument and StaticJsonDocument

	Added deserializeJson()

	Added serializeJson() and serializeJsonPretty()

	Added measureJson() and measureJsonPretty()

	Added serializeMsgPack(), deserializeMsgPack() and measureMsgPack() (issue #358)

	Added example MsgPackParser.ino (issue #358)

	Added support for non zero-terminated strings (issue #704)

	Removed JsonBuffer::parseArray(), parseObject() and parse()

	Removed JsonBuffer::createArray() and createObject()

	Removed printTo() and prettyPrintTo()

	Removed measureLength() and measurePrettyLength()

	Removed all deprecated features

BREAKING CHANGES

Deserialization

Old code:

DynamicJsonBuffer jb;
JsonObject& obj = jb.parseObject(json);
if (obj.success()) {

}

New code:

DynamicJsonDocument doc;
DeserializationError error = deserializeJson(doc, json);
if (error) {

}
JsonObject& obj = doc.as<JsonObject>();

Serialization

Old code:

DynamicJsonBuffer jb;
JsonObject& obj = jb.createObject();
obj["key"] = "value";
obj.printTo(Serial);

New code:

DynamicJsonDocument obj;
JsonObject& obj = doc.to<JsonObject>();
obj["key"] = "value";
serializeJson(doc, Serial);

v5.13.2

	Fixed JsonBuffer::parse() not respecting nesting limit correctly (issue #693)

	Fixed inconsistencies in nesting level counting (PR #695 from Zhenyu Wu)

	Fixed null values that could be pass to strcmp() (PR #745 from Mike Karlesky)

	Added macros ARDUINOJSON_VERSION, ARDUINOJSON_VERSION_MAJOR…

v5.13.1

	Fixed JsonVariant::operator|(int) that returned the default value if the variant contained a double (issue #675)

	Allowed non-quoted key to contain underscores (issue #665)

v5.13.0

	Changed the rules of string duplication (issue #658)

	RawJson() accepts any kind of string and obeys to the same rules for duplication

	Changed the return type of strdup() to const char* to prevent double duplication

	Marked strdup() as deprecated

New rules for string duplication

type	duplication
:—————————	:————
const char*	no
char*	~~no~~ yes
String	yes
std::string	yes
const __FlashStringHelper*	yes

These new rules make JsonBuffer::strdup() useless.

v5.12.0

	Added JsonVariant::operator| to return a default value (see below)

	Added a clear error message when compiled as C instead of C++ (issue #629)

	Added detection of MPLAB XC compiler (issue #629)

	Added detection of Keil ARM Compiler (issue #629)

	Added an example that shows how to save and load a configuration file

	Reworked all other examples

How to use the new feature?

If you have a block like this:

const char* ssid = root["ssid"];
if (!ssid)
 ssid = "default ssid";

You can simplify like that:

const char* ssid = root["ssid"] | "default ssid";

v5.11.2

	Fixed DynamicJsonBuffer::clear() not resetting allocation size (issue #561)

	Fixed incorrect rounding for float values (issue #588)

v5.11.1

	Removed dependency on PGM_P as Particle 0.6.2 doesn’t define it (issue #546)

	Fixed warning “dereferencing type-punned pointer will break strict-aliasing rules [-Wstrict-aliasing]”

	Fixed warning “floating constant exceeds range of ‘float’ [-Woverflow]” (issue #544)

	Fixed warning “this statement may fall through” [-Wimplicit-fallthrough=] (issue #539)

	Removed ARDUINOJSON_DOUBLE_IS_64BITS as it became useless.

	Fixed too many decimals places in float serialization (issue #543)

v5.11.0

	Made JsonBuffer non-copyable (PR #524 by @luisrayas3)

	Added StaticJsonBuffer::clear()

	Added DynamicJsonBuffer::clear()

v5.10.1

	Fixed IntelliSense errors in Visual Micro (issue #483)

	Fixed compilation in IAR Embedded Workbench (issue #515)

	Fixed reading “true” as a float (issue #516)

	Added ARDUINOJSON_DOUBLE_IS_64BITS

	Added ARDUINOJSON_EMBEDDED_MODE

v5.10.0

	Removed configurable number of decimal places (issues #288, #427 and #506)

	Changed exponentiation thresholds to 1e7 and 1e-5 (issues #288, #427 and #506)

	JsonVariant::is<double>() now returns true for integers

	Fixed error IsBaseOf is not a member of ArduinoJson::TypeTraits (issue #495)

	Fixed error forming reference to reference (issue #495)

BREAKING CHANGES :warning:

Old syntax	New syntax
:——————————–	:——————–
double_with_n_digits(3.14, 2)	3.14
float_with_n_digits(3.14, 2)	3.14f
obj.set("key", 3.14, 2)	obj["key"] = 3.14
arr.add(3.14, 2)	arr.add(3.14)

Input	Old output	New output
:———-	:———–	:———–
3.14159	3.14	3.14159
42.0	42.00	42
0.0	0.00	0

Expression	Old result	New result
:——————————-	:———–	:———–
JsonVariant(42).is<int>()	true	true
JsonVariant(42).is<float>()	false	true
JsonVariant(42).is<double>()	false	true

v5.9.0

	Added JsonArray::remove(iterator) (issue #479)

	Added JsonObject::remove(iterator)

	Renamed JsonArray::removeAt(size_t) into remove(size_t)

	Renamed folder include/ to src/

	Fixed warnings floating constant exceeds range of floatand floating constant truncated to zero (issue #483)

	Removed Print class and converted printTo() to a template method (issue #276)

	Removed example IndentedPrintExample.ino

	Now compatible with Particle 0.6.1, thanks to Jacob Nite (issue #294 and PR #461 by @foodbag)

v5.8.4

	Added custom implementation of strtod() (issue #453)

	Added custom implementation of strtol() (issue #465)

	char is now treated as an integral type (issue #337, #370)

v5.8.3

	Fixed an access violation in DynamicJsonBuffer when memory allocation fails (issue #433)

	Added operators == and != for two JsonVariants (issue #436)

	Fixed JsonVariant::operator[const FlashStringHelper*] (issue #441)

v5.8.2

	Fixed parsing of comments (issue #421)

	Fixed ignored Stream timeout (issue #422)

	Made sure we don’t read more that necessary (issue #422)

	Fixed error when the key of a JsonObject is a char[] (issue #423)

	Reduced code size when using const references

	Fixed error with string of type unsigned char* (issue #428)

	Added deprecated attribute on asArray(), asObject() and asString() (issue #420)

v5.8.1

	Fixed error when assigning a volatile int to a JsonVariant (issue #415)

	Fixed errors with Variable Length Arrays (issue #416)

	Fixed error when both ARDUINOJSON_ENABLE_STD_STREAM and ARDUINOJSON_ENABLE_ARDUINO_STREAM are set to 1

	Fixed error “Stream does not name a type” (issue #412)

v5.8.0

	Added operator == to compare JsonVariant and strings (issue #402)

	Added support for Stream (issue #300)

	Reduced memory consumption by not duplicating spaces and comments

BREAKING CHANGES :warning:

JsonBuffer::parseObject() and JsonBuffer::parseArray() have been pulled down to the derived classes DynamicJsonBuffer and StaticJsonBufferBase.

This means that if you have code like:

void myFunction(JsonBuffer& jsonBuffer);

you need to replace it with one of the following:

void myFunction(DynamicJsonBuffer& jsonBuffer);
void myFunction(StaticJsonBufferBase& jsonBuffer);
template<typename TJsonBuffer> void myFunction(TJsonBuffer& jsonBuffer);

v5.7.3

	Added an printTo(char[N]) and prettyPrintTo(char[N]) (issue #292)

	Added ability to set a nested value like this: root["A"]["B"] = "C" (issue #352)

	Renamed *.ipp to *Impl.hpp because they were ignored by Arduino IDE (issue #396)

v5.7.2

	Made PROGMEM available on more platforms (issue #381)

	Fixed PROGMEM causing an exception on ESP8266 (issue #383)

v5.7.1

	Added support for PROGMEM (issue #76)

	Fixed compilation error when index is not an int (issue #381)

v5.7.0

	Templatized all functions using String or std::string

	Removed ArduinoJson::String

	Removed JsonVariant::defaultValue<T>()

	Removed non-template JsonObject::get() and JsonArray.get()

	Fixed support for StringSumHelper (issue #184)

	Replaced ARDUINOJSON_USE_ARDUINO_STRING by ARDUINOJSON_ENABLE_STD_STRING and ARDUINOJSON_ENABLE_ARDUINO_STRING (issue #378)

	Added example StringExample.ino to show where String can be used

	Increased default nesting limit to 50 when compiled for a computer (issue #349)

BREAKING CHANGES :warning:

The non-template functions JsonObject::get() and JsonArray.get() have been removed. This means that you need to explicitely tell the type you expect in return.

Old code:

#define ARDUINOJSON_USE_ARDUINO_STRING 0
JsonVariant value1 = myObject.get("myKey");
JsonVariant value2 = myArray.get(0);

New code:

#define ARDUINOJSON_ENABLE_ARDUINO_STRING 0
#define ARDUINOJSON_ENABLE_STD_STRING 1
JsonVariant value1 = myObject.get<JsonVariant>("myKey");
JsonVariant value2 = myArray.get<JsonVariant>(0);

v5.6.7

	Fixed array[idx].as<JsonVariant>() and object[key].as<JsonVariant>()

	Fixed return value of JsonObject::set() (issue #350)

	Fixed undefined behavior in Prettyfier and Print (issue #354)

	Fixed parser that incorrectly rejected floats containing a + (issue #349)

v5.6.6

	Fixed -Wparentheses warning introduced in v5.6.5 (PR #335 by @nuket)

	Added .mbedignore for ARM mbdeb (PR #334 by @nuket)

	Fixed JsonVariant::success() which didn’t propagate JsonArray::success() nor JsonObject::success() (issue #342).

v5.6.5

	as<char*>() now returns true when input is null (issue #330)

v5.6.4

	Fixed error in float serialization (issue #324)

v5.6.3

	Improved speed of float serialization (about twice faster)

	Added as<JsonArray>() as a synonym for as<JsonArray&>()… (issue #291)

	Fixed call of overloaded isinf(double&) is ambiguous (issue #284)

v5.6.2

	Fixed build when another lib does #undef isnan (issue #284)

v5.6.1

	Added missing #pragma once (issue #310)

v5.6.0

	ArduinoJson is now a header-only library (issue #199)

v5.5.1

	Fixed compilation error with Intel Galileo (issue #299)

v5.5.0

	Added JsonVariant::success() (issue #279)

	Renamed JsonVariant::invalid<T>() to JsonVariant::defaultValue<T>()

v5.4.0

	Changed ::String to ArduinoJson::String (issue #275)

	Changed ::Print to ArduinoJson::Print too

v5.3.0

	Added custom implementation of ftoa (issues #266, #267, #269 and #270)

	Added JsonVariant JsonBuffer::parse() (issue #265)

	Fixed unsigned long printed as signed long (issue #170)

v5.2.0

	Added JsonVariant::as<char*>() as a synonym for JsonVariant::as<const char*>() (issue #257)

	Added example JsonHttpClient (issue #256)

	Added JsonArray::copyTo() and JsonArray::copyFrom() (issue #254)

	Added RawJson() to insert pregenerated JSON portions (issue #259)

v5.1.1

	Removed String duplication when one replaces a value in a JsonObject (PR #232 by @ulion)

v5.1.0

	Added support of long long (issue #171)

	Moved all build settings to ArduinoJson/Configuration.hpp

BREAKING CHANGE :warning:

If you defined ARDUINOJSON_ENABLE_STD_STREAM, you now need to define it to 1.

v5.0.8

	Made the library compatible with PlatformIO [http://platformio.org/] (issue #181)

	Fixed JsonVariant::is<bool>() that was incorrectly returning false (issue #214)

v5.0.7

	Made library easier to use from a CMake project: simply add_subdirectory(ArduinoJson/src)

	Changed String to be a typedef of std::string (issues #142 and #161)

BREAKING CHANGES :warning:

	JsonVariant(true).as<String>() now returns "true" instead of "1"

	JsonVariant(false).as<String>() now returns "false" instead of "0"

v5.0.6

	Added parameter to DynamicJsonBuffer constructor to set initial size (issue #152)

	Fixed warning about library category in Arduino 1.6.6 (issue #147)

	Examples: Added a loop to wait for serial port to be ready (issue #156)

v5.0.5

	Added overload JsonObjectSuscript::set(value, decimals) (issue #143)

	Use float instead of double to reduce the size of JsonVariant (issue #134)

v5.0.4

	Fixed ambiguous overload with JsonArraySubscript and JsonObjectSubscript (issue #122)

v5.0.3

	Fixed printTo(String) which wrote numbers instead of strings (issue #120)

	Fixed return type of JsonArray::is<T>() and some others (issue #121)

v5.0.2

	Fixed segmentation fault in parseObject(String) and parseArray(String), when the
StaticJsonBuffer is too small to hold a copy of the string

	Fixed Clang warning “register specifier is deprecated” (issue #102)

	Fixed GCC warning “declaration shadows a member” (issue #103)

	Fixed memory alignment, which made ESP8266 crash (issue #104)

	Fixed compilation on Visual Studio 2010 and 2012 (issue #107)

v5.0.1

	Fixed compilation with Arduino 1.0.6 (issue #99)

v5.0.0

	Added support of String class (issues #55, #56, #70, #77)

	Added JsonBuffer::strdup() to make a copy of a string (issues #10, #57)

	Implicitly call strdup() for String but not for char* (issues #84, #87)

	Added support of non standard JSON input (issue #44)

	Added support of comments in JSON input (issue #88)

	Added implicit cast between numerical types (issues #64, #69, #93)

	Added ability to read number values as string (issue #90)

	Redesigned JsonVariant to leverage converting constructors instead of assignment operators (issue #66)

	Switched to new the library layout (requires Arduino 1.0.6 or above)

BREAKING CHANGES :warning:

	JsonObject::add() was renamed to set()

	JsonArray::at() and JsonObject::at() were renamed to get()

	Number of digits of floating point value are now set with double_with_n_digits()

Personal note about the String class:
Support of the String class has been added to the library because many people use it in their programs.
However, you should not see this as an invitation to use the String class.
The String class is bad because it uses dynamic memory allocation.
Compared to static allocation, it compiles to a bigger, slower program, and is less predictable.
You certainly don’t want that in an embedded environment!

Contribution to ArduinoJson

First, thank you for taking the time to contribute to this project.

You can submit changes via GitHub Pull Requests.

Please:

	Unit test every change in behavior

	Use clang-format in “file” mode to format the code

	Consider using the Continuous Integration (Travis and AppVeyor)

The MIT License (MIT)

Copyright © 2014-2020 Benoit BLANCHON

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 [image: ../../_images/banner.svg]ArduinoJson

[image: ../../_images/ArduinoJson.svg]arduino-library-badge [https://www.ardu-badge.com/ArduinoJson/6.15.0]
[image: ../../_images/6.x]Build Status [https://ci.appveyor.com/project/bblanchon/arduinojson/branch/6.x]
[image: ../../_images/ArduinoJson1.svg]Build Status [https://travis-ci.org/bblanchon/ArduinoJson]
[image: ../../_images/arduinojson.svg]Fuzzing Status [https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-opened&can=1&q=proj:arduinojson]
[image: ../../_images/badge.svg]Coverage Status [https://coveralls.io/github/bblanchon/ArduinoJson?branch=6.x]
[image: ../../_images/ArduinoJson2.svg]GitHub stars [https://github.com/bblanchon/ArduinoJson/stargazers]

ArduinoJson is a C++ JSON library for Arduino and IoT (Internet Of Things).

Features

	JSON deserialization [https://arduinojson.org/v6/api/json/deserializejson/?utm_source=github&utm_medium=readme]

	Optionally decodes UTF-16 escape sequences to UTF-8 [https://arduinojson.org/v6/api/config/decode_unicode/?utm_source=github&utm_medium=readme]

	Optionally stores links to the input buffer (zero-copy) [https://arduinojson.org/v6/api/json/deserializejson/?utm_source=github&utm_medium=readme]

	Optionally supports comments in the input [https://arduinojson.org/v6/api/config/enable_comments/?utm_source=github&utm_medium=readme]

	Optionally filters the input to keep only desired values [https://arduinojson.org/v6/api/json/deserializejson/#filtering?utm_source=github&utm_medium=readme]

	Supports single quotes as a string delimiter

	Compatible with NDJSON and JSON Lines

	JSON serialization [https://arduinojson.org/v6/api/json/serializejson/?utm_source=github&utm_medium=readme]

	Can write to a buffer or a stream [https://arduinojson.org/v6/api/json/serializejson/?utm_source=github&utm_medium=readme]

	Optionally indents the document (prettified JSON) [https://arduinojson.org/v6/api/json/serializejsonpretty/?utm_source=github&utm_medium=readme]

	MessagePack serialization [https://arduinojson.org/v6/api/msgpack/serializemsgpack/?utm_source=github&utm_medium=readme]

	MessagePack deserialization [https://arduinojson.org/v6/api/msgpack/deserializemsgpack/?utm_source=github&utm_medium=readme]

	Efficient

	Twice smaller than the “official” Arduino_JSON library [https://arduinojson.org/2019/11/19/arduinojson-vs-arduino_json/?utm_source=github&utm_medium=readme]

	Almost 10% faster than the “official” Arduino_JSON library [https://arduinojson.org/2019/11/19/arduinojson-vs-arduino_json/?utm_source=github&utm_medium=readme]

	Consumes roughly 10% less RAM than the “official” Arduino_JSON library [https://arduinojson.org/2019/11/19/arduinojson-vs-arduino_json/?utm_source=github&utm_medium=readme]

	Fixed memory allocation, no heap fragmentation [https://arduinojson.org/v6/api/jsondocument/?utm_source=github&utm_medium=readme]

	Optionally works without heap memory (zero malloc) [https://arduinojson.org/v6/api/staticjsondocument/?utm_source=github&utm_medium=readme]

	Versatile

	Supports custom allocators (to use external RAM chip, for example) [https://arduinojson.org/v6/how-to/use-external-ram-on-esp32/?utm_source=github&utm_medium=readme]

	Supports Arduino’s String [https://arduinojson.org/v6/api/config/enable_arduino_string/] and STL’s std::string [https://arduinojson.org/v6/api/config/enable_std_string/?utm_source=github&utm_medium=readme]

	Supports Arduino’s Stream and STL’s std::istream/std::ostream [https://arduinojson.org/v6/api/config/enable_std_stream/?utm_source=github&utm_medium=readme]

	Supports Flash strings [https://arduinojson.org/v6/api/config/enable_progmem/?utm_source=github&utm_medium=readme]

	Supports custom readers [https://arduinojson.org/v6/api/json/deserializejson/#custom-reader] and custom writers [https://arduinojson.org/v6/api/json/serializejson/#custom-writer?utm_source=github&utm_medium=readme]

	Portable

	Usable on any C++ project (not limited to Arduino)

	Compatible with C++98

	Zero warnings with -Wall -Wextra -pedantic and /W4

	Header-only library [https://en.wikipedia.org/wiki/Header-only]

	Works with virtually any board

	Arduino boards: Uno [https://amzn.to/38aL2ik], Due [https://amzn.to/36YkWi2], Micro [https://amzn.to/35WkdwG], Nano [https://amzn.to/2QTvwRX], Mega [https://amzn.to/36XWhuf], Yun [https://amzn.to/30odURc], Leonardo [https://amzn.to/36XWjlR]…

	Espressif chips: ESP8266 [https://amzn.to/36YluV8], ESP32 [https://amzn.to/2G4pRCB]

	Lolin (WeMos) boards: D1 mini [https://amzn.to/2QUpz7q], D1 Mini Pro [https://amzn.to/36UsGSs]…

	Teensy boards: 4.0 [https://amzn.to/30ljXGq], 3.2 [https://amzn.to/2FT0EuC], 2.0 [https://amzn.to/2QXUMXj]

	Particle boards: Argon [https://amzn.to/2FQHa9X], Boron [https://amzn.to/36WgLUd], Electron [https://amzn.to/30vEc4k], Photon [https://amzn.to/387F9Cd]…

	Texas Instruments boards: MSP430 [https://amzn.to/30nJWgg]…

	Tested on all major development environments

	Arduino IDE [https://www.arduino.cc/en/Main/Software]

	Atmel Studio [http://www.atmel.com/microsite/atmel-studio/]

	Atollic TrueSTUDIO [https://atollic.com/truestudio/]

	Energia [http://energia.nu/]

	IAR Embedded Workbench [https://www.iar.com/iar-embedded-workbench/]

	Keil uVision [http://www.keil.com/]

	MPLAB X IDE [http://www.microchip.com/mplab/mplab-x-ide]

	PlatformIO [http://platformio.org/]

	Sloeber plugin for Eclipse [https://eclipse.baeyens.it/]

	Visual Micro [http://www.visualmicro.com/]

	Visual Studio [https://www.visualstudio.com/]

	Even works with online compilers like wandbox.org [https://wandbox.org/permlink/t7KP7I6dVuLhqzDl]

	Well designed

	Elegant API [http://127.0.0.1:4000/v6/example/]

	Thread-safe [https://en.wikipedia.org/wiki/Thread_safety]

	Self-contained (no external dependency)

	const friendly

	for friendly [https://arduinojson.org/v6/api/jsonobject/begin_end/?utm_source=github&utm_medium=readme]

	TMP friendly [https://en.wikipedia.org/wiki/Template_metaprogramming]

	Handles integer overflows [https://arduinojson.org/v6/api/jsonvariant/as/#integer-overflows?utm_source=github&utm_medium=readme]

	Well tested

	Unit test coverage close to 100% [https://coveralls.io/github/bblanchon/ArduinoJson?branch=6.x]

	Continuously tested on

	Visual Studio 2010, 2012, 2013, 2015, 2017, 2019 [https://ci.appveyor.com/project/bblanchon/arduinojson/branch/6.x]

	GCC 4.4, 4.6, 4.7, 4.8, 4.9, 5, 6, 7, 8 [https://travis-ci.org/bblanchon/ArduinoJson]

	Clang 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 5.0, 6.0, 7, 8 [https://travis-ci.org/bblanchon/ArduinoJson]

	Continuously fuzzed with Google OSS Fuzz [https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-opened&can=1&q=proj:arduinojson]

	Well documented

	Tutorials [https://arduinojson.org/v6/doc/deserialization/?utm_source=github&utm_medium=readme]

	Examples [https://arduinojson.org/v6/example/?utm_source=github&utm_medium=readme]

	How-tos [https://arduinojson.org/v6/example/?utm_source=github&utm_medium=readme]

	FAQ [https://arduinojson.org/v6/faq/?utm_source=github&utm_medium=readme]

	Book [https://arduinojson.org/book/?utm_source=github&utm_medium=readme]

	Vibrant user community

	Most popular of all Arduino libraries on GitHub [https://github.com/search?o=desc&q=arduino+library&s=stars&type=Repositories] and PlatformIO [https://platformio.org/lib/search]

	Used in hundreds of projects [https://www.hackster.io/search?i=projects&q=arduinojson]

	Responsive support [https://github.com/bblanchon/ArduinoJson/issues?q=is%3Aissue+is%3Aclosed]

Quickstart

Deserialization

Here is a program that parses a JSON document with ArduinoJson.

char json[] = "{\"sensor\":\"gps\",\"time\":1351824120,\"data\":[48.756080,2.302038]}";

DynamicJsonDocument doc(1024);
deserializeJson(doc, json);

const char* sensor = doc["sensor"];
long time = doc["time"];
double latitude = doc["data"][0];
double longitude = doc["data"][1];

See the tutorial on arduinojson.org [https://arduinojson.org/doc/decoding/?utm_source=github&utm_medium=readme]

Serialization

Here is a program that generates a JSON document with ArduinoJson:

DynamicJsonDocument doc(1024);

doc["sensor"] = "gps";
doc["time"] = 1351824120;

JsonArray data = doc.createNestedArray("data");
data.add(48.756080);
data.add(2.302038);

serializeJson(doc, Serial);
// This prints:
// {"sensor":"gps","time":1351824120,"data":[48.756080,2.302038]}

See the tutorial on arduinojson.org [https://arduinojson.org/doc/encoding/?utm_source=github&utm_medium=readme]

Support the project

Do you like this library? Please star this project on GitHub [https://github.com/bblanchon/ArduinoJson/stargazers]!

What? You don’t like it but you love it?
We don’t take donations anymore, but we sell a book [https://arduinojson.org/book/?utm_source=github&utm_medium=readme], so you can help and learn at the same time?utm_source=github&utm_medium=readme!

ArduinoJson Support

First off, thank you very much for using ArduinoJson.

We’ll be very happy to help you, but first please read the following.

Before asking for help

	Read the FAQ [https://arduinojson.org/faq/?utm_source=github&utm_medium=support]

	Search in the API Reference [https://arduinojson.org/api/?utm_source=github&utm_medium=support]

If you did not find the answer, please create a new issue on GitHub [https://github.com/bblanchon/ArduinoJson/issues/new].

It is OK to add a comment to a currently opened issue, but please avoid adding comments to a closed issue.

Before hitting the Submit button

Please provide all the relevant information:

	Good title

	Short description of the problem

	Target platform

	Compiler model and version

	MVCE [https://stackoverflow.com/help/mcve]

	Compiler output

Good questions get fast answers!

 _static/plus.png

_static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

